CHROM. 8653

Note

Extraction of steroid diconjugates using Amberlite XAD-2 resin

MICHIO MATSUI, MISAKO HAKOZAKI and YUKO KINUYAMA Kyoritsu College of Pharmacy, Shibakōen-I-Chome, Minato-ku, Tokyo 105 (Iapan) (Received July 22nd, 1975)

Amberlite XAD-2 resin has been successfully applied to the extraction of steroid conjugates from biological fluids such as urine¹ and bile². Steroid conjugates are usually almost quantitatively adsorbed on the XAD-2 resin and subsequent washing with distilled water removes most of the solids present in the biological fluids. The conjugates on the resin can be quantitatively recovered in succession on elution with methanol.

During an investigation of the biliary metabolites of $[4-^{14}C]$ testosterone (¹⁴C-T) and $[7-^{3}H]$ testosterone-17-sulphate (³H-TS) in the rat³ we observed that use of the XAD-2 resin as a means of separating steroid conjugates from rat bile resulted in relatively poor recoveries of the radioactivity in the methanol fraction, whereas the biliary metabolites of $[1,2-^{3}H_2]$ testosterone-17-glucosiduronate (³H-TGA) in the rat⁴ usually gave more than 90% recoveries employing the same method. In the latter study ³H-TGA was metabolized predominantly to C₁₉O₂ steroid monoglucosiduronates. In contrast, ³H-TS was biotransformed mainly into C₁₉O₂ and polar hydroxylated steroid (C₁₉O₃, C₁₉O₄, etc.) diconjugates (mostly as disulphates). Simultaneously administered ¹⁴C-T, which was metabolized to C₁₉O₂ and polar hydroxylated steroid conjugates, afforded relatively poor recoveries using the XAD-2 resin method. Thus, the increased hydrophilic nature of the ³H-TS and ¹⁴C-T metabolites due to hydroxylation of the steroid moiety and/or to diconjugation might reduce the affinity of these conjugates for the XAD-2 resin.

In the present study, the biliary metabolites of ³H-TS and ¹⁴C-T is the rat were obtained by Sephadex LH-20 column chromatography. These biliary metabolites were not adsorbed completely on the XAD-2 resin and modified procedures are described for their improved recovery from the resin.

EXPERIMENTAL

¹⁴C-T (activity, 20.2 mCi/mmole), ³H-TS (25 Ci/mmole) and ³H-TGA (45 Ci/mmole) were purchased from New England Nuclear, Boston Mass., U.S.A. Details of the grade, source and preparation of reference steroids and reagents were reported previously⁵. Amberlite XAD-2 resin (Rohm & Haas, Philadelphia, Pa., U.S.A.; 100 g dry weight) was suspended in methanol and packed on to a column (700 \times 20 mm I.D.) as a slurry. The resin was washed with 21 of methanol and subsequently with

21 of distilled water. Sephadex LH-20 (Pharmacia, Uppsala, Sweden) was processed as described by Laatikainen and Vihko⁶.

A mixture of ¹⁴C-T (0.41 μ Ci, 27 nmoles) and ³H-TS (1.55 μ Ci, 27 nmoles) was administered intraperitoneally to male and female rats of the Wistar strain which weighed 250–300 g and had biliary fistulas. The biliary metabolites, ranging from 50 to 73% of the injected dose, were chromatographed on a column packed with Sephadex LH-20 and afforded monoglucosiduronate (³H, 0.9–1.3%; ¹⁴C, 22%), monosulphate (³H, 6–11%; ¹⁴C, 11–25%) and diconjugate (³H, 20–47%; ¹⁴C, 9%) fractions as described earlier³. The values in parentheses were calculated from the injected dose.

Each conjugate fraction was evaporated, dissolved in 10 ml of distilled water and passed through a column packed with Amberlite XAD-2 resin. The column was washed with 400, 200 or 100 ml of water, followed by elution with 400 ml of methanol. The diconjugates were solvolyzed in acidified ethyl acetate and the liberated steroids were examined by thin-layer chromatography (TLC) on plates coated with silica gel GF (E. Merck, Darmstadt, G.F.R.). The solvent was chloroform-acetone (29:1) and the procedure was as described previously⁴. Radioactive zones were detected with a Packard Model 7201 autoscanner, scraped and eluted with methanol. The radioactivity was counted with an Aloka LSC-502 liquid scintillation spectrometer in a toluene medium as reported previously⁴. Chloride was determined by the silver nitrate method⁷. Urea was determined by the diacetylmonoxime method⁸.

RESULTS AND DISCUSSION

As a standard procedure for the separation of steroid conjugates, we employed the following condition: the column packed with Amberlite XAD-2 resin (100 g) was washed with 400 ml of distilled water following adsorption of the steroid conjugates and then eluted with 400 ml of methanol. Each conjugate fraction was processed by this procedure and typical recoveries of the radioactivity in both aqueous and methanol fractions are shown in Table I. Thus, it was apparent that the diconjugates were not adsorbed completely on the XAD-2 resin, in comparison with other conjugate fractions. In order to obtain information concerning the nature of the diconjugates,

TABLE I

PERCENT RECOVERY OF VARIOUS STEROID CONJUGATES FROM AMBERLITE XAD-2 RESIN

The column was washed with 400 ml of distilled water, followed by elution with 400 ml of methanol.

Conjugate fraction	Rat	Radioactivity added (dpm)		Radioactivity recovered (%)			
				Aqueous fraction		Methanol fraction	
		³ H	14C	³ H	14C	³ H	¹⁴ C
Monogiucosiduronate	Male	5110	11,000	0	2.9	95.0	96.5
Monosulphate	remaie Male	5970	10,600 5960	0 7.5	5.0 17.6	105 91 3	92.0 78.0
	Female	15,300	51,600	13.4	9.3	88.2	96.1
Diconjugate	Male Female	95,400 101,000	4640 9840	32.0 25.0	40.9 29.8	64.5 70.9	63.6 68.0

these aqueous and methanol fractions were solvolyzed, extracted with ethyl acetate and examined by TLC. No substantial differences were observed in their hydrolysis rates. In the male rat, ca. 95% of the hydrogen-3 and 74% of the carbon-14 in both fractions were extracted with ethyl acetate. The corresponding values for the female rat were ca. 73 and 64% respectively. TLC examination of the liberated steroids gave the following results. The aqueous fraction from the male rat demonstrated the presence of metabolites corresponding to polar hydroxylated steroids (3H, 24%; 14C, 68%) and 5 α -androstane-3 β ,17 β -diol (3H, 63%; 14C, 10%), whereas the methanol fraction gave polar hydroxylated steroids (3H, 11%; 14C, 66%) and 5¢-androstane-3β,17β-diol (³H, 80%; ¹⁴C, 17%). TLC examination of the aqueous fraction from the female rat showed the presence of polar hydroxylated steroids (3H, 54%; 14C, 43%) and 5a- androstane-3a,17β-diol (3H, 34%; 14C, 36%), metabolites corresponding to polar hydroxylated steroids (³H, 42%; ¹⁴C, 41%) and 5α -androstane- 3α , 17β -diol (³H, 45%; ¹⁴C, 34%) being isolated from the methanol fraction. These results confirm the incomplete adsorption of C19O2 and polar hydroxylated steroid diconjugates on the XAD-2 resin.

In order to improve the recovery of the diconjugates, the XAD-2 resin was washed with 200 ml of distilled water, followed by elution with 400 ml of methanol. Typical recoveries are given in Table II. Thus, the diconjugates with relatively poor recoveries ranging from 64 to 71 % with the standard procedure were recovered to the extent of 75–85% using this modified procedure. For comparison, ³H-TS (20,200 dpm) and ³H-TGA (22,000 dpm) were treated by this procedure and these monoconjugates provided 99% recoveries. Additional studies were then made with sodium chloride and urea in order to determine to what extent inorganic and organic compounds were eluted in the methanol fraction. Each 100 mg of sodium chloride and urea was treated as above. Determination of these compounds revealed that they were recovered quantitatively in the aqueous fraction. Thus, the reduction in volume of water from 400 to 200 ml should have little influence on the contaminations by inorganic and organic compounds. High recoveries of the diconjugates were obtained on washing the XAD-2 resin with 100 ml of distilled water, followed by elution with 400 ml of

TABLE II

Procedure	Rat	Radioactivity added (dpm)		Radioactivity recovered (%)				
				Aqueous fraction		Methanol fraction		
		³ <i>H</i>	¹⁴ C	зH	¹⁴ C	³ H	14C	
A*	Male	13,600	2090	19.0	18.0	80.5	82.0	
	Female	16,100	2430	23.4	13.6	74.6	85.0	
B**	Male	13,600	2090	6.6	2.9	91.2	84.6	
	Female	16,500	2950	6.1	4.1	98.8	91.5	

PERCENT RECOVERY OF STEROID DICONJUGATES FROM AMBERLITE XAD-2 RESIN USING THE MODIFIED PROCEDURES

* The column was washed with 200 ml of distilled water, followed by elution with 400 ml of methanol.

** The column was washed with 100 ml of distilled water, followed by elution with 400 ml of methanol.

methanol (Table II). However, 4% of the sodium chloride and 23% of the urea appeared in the methanol fraction. These results demonstrate that the reduction in volume of water results in a convenient procedure for recovering the diconjugates from the XAD-2 resin, although some contamination by inorganic and organic compounds is inevitable. However, the modified procedure should be especially applicable to the extraction of steroid diconjugates from sodium chloride solutions following Sephadex LH-20⁶ or DEAE-Sephadex⁹ column chromatography of steroid conjugates, which employs 0.01 M sodium chloride as solvent or a 0–0.8 M sodium chloride gradient as the moving solvent phase.

REFERENCES

- 1 H. L. Bradlow, Steroids, 11 (1968) 265.
- 2 H. Jirku and M. Levitz, J. Clin. Endocrinol., 29 (1969) 615.
- 3 M. Matsui, Y. Kinuyama and M. Hakozaki, Steroids, 25 (1975) 637.
- 4 M. Matsui, Y. Kinuyama and M. Hakozaki, Steroids, 24 (1974) 557.
- 5 M. Matsui, F. Abe, K. Kimura and M. Okada, Chem. Pharm. Bull. (Tokyo), 20 (1972) 1913.
- 6 T. Laatikainen and R. Vihko, Steroids, 14 (1969) 119.
- 7 I. M. Kolthoff and E. B. Sandell, Textbook of Quantitative Inorganic Analysis, Macmillan, New York, 1936, p. 540.
- 8 A. A. Ormsby, J. Biol. Chem., 146 (1942) 595.
- 9 R. Hobkirk, P. Musey and M. Nilsen, Steroids, 14 (1969) 191.